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STABILITY OF JETS OF AN IDEAL PONDERABLE LIQUID 

V. I. Eliseev UDC 532.516 

The stability of jets of an ideal liquid was investigated in [1-4], where it was as- 
sumed that t:he undisturbed flow is parallel, and the velocity of the liquid in the jet is 
constant. In this paper we examine the stability of jets of ponderable liquids within the 
framework of linear theory, taking into account the effect of the surrounding medium, which 
is also ass~ed to be ideal. The ponderability of the liquid is manifested in the deviation 
of the jet boundaries from the parallel direction and the dependence of the velocity on the 
longitudinal coordinate. These features can be taken into account as, for instance, in the 
theory of stability of laminar boundary layers, where the flow is assumed to be quasi-paral- 
lel. In this case the dependence of the jet thickness and velocity in the jet on the longi- 
tudinal coordinate can be regarded as parametric. In this paper we examine a significantly 
nonparallel :flow and, hence, for determination of the stability characteristics of a jet flow 
in this case we propose an asymptotic method. 

i. Basic Equations. The basic equations have the form 

O2@i k a~i  020i O, i = 1, 2, 
. Ox 2 + r ' ~ ' r  -~ Or-"-~-~ 

"-ST + Pi 2 -T gx  = const~, 

(z.z) 

where ui = 8~])i/#x, vi = OaP~/Or are the projections of the velocity on the x and r axes, Pi is 
the pressure, Oi is the density; k = 0 for a plane jet, k = 1 for an axis}nnmetric jet; the 
subscript 1 relates to the flow parameters in the jet, and the subscript 2 relates to the 
surrounding medium. On the jet boundary the conditions 

v~ = Oa/Ot + u~Oa/Ox, Pl  - -  P~ = a ( i / R  + k/a) ,  

R = - -  [1 + (a~/ax)2] 8/2 
O2 a / Ox ~ 

a r e  f u l f i l l e d ,  w h e r e  a i s  t h e  r a d i u s  (k  = 1)  o r  h a l f w i d t h  (k  = O) o f  t h e  j e t ;  o i s  t h e  c o e f -  
f i c i e n t  of surface tension. 

Henceforth, we will deal with the problem in region 1 in the variables ~ = x/ao, ~----Ut/ao, 
n = r/co, and in region 2 in the variables ~, T, and N = (r--a)/ao~ m + k, where ao is the linear 
scale; U is the velocity scale; m is a coefficient which will be determined below. Keeping 
within the framework of linear theory, we put the solutions of Eqs. (i.i) in the form 

cD~ = aoU ( ~  + q~is), P i  = p l U  2 (P~ + Pi6), alao = y ,  + 6, 

where the first terms on the right-hand sides correspond to undisturbed motion, and the sec- 
ond terms to disturbed motion. 

In the new variables the equations for the disturbed motion and the boundary equations 
have the form (the velocity of the ~surrounding medium is zero) 
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o~.~ - ~ - 2  ~ / , ~ - V ~  * , ~ - ~  ~ +~ ,~] ~,, 

y , n ~ - - 2  ; y".) O~On ~ 2 --On" + 

,3 -2~ 6 r , k.-~Oq~ k 6 Oq~ g~ n~ 
-V- n ~. ~n 2 n _.u3 0n + \ u. ~ + y~ J ~  = O' 

6' 
E 

o~  - -  " ~ -  + ~ + i  zm ~-~ ~= xv 2m~- N o ~  

o~v" . ~ = O, 

p ~  + P~ 0%0 = 0; 
px 0w 

o, ro,,o 

y, o.  y ,  ~ / o.  j .=~ ~ -JN=~ = 8", 

(1.2) 

(1.3) 

(1.4) 

2. Plane Jet (k = 0). In this case the asymptotic form of the solution (large ~) of 
the undisturbed equations is fairly simple: 

I 3 
= - - - - U  - j '  

y ,  = ~-x/2, 

k-U/ ' 

1 5 v ~ /  ' 

We will not consider the subsequent terms of the expansions, since their order lies outside 
the number of approximations considered in this paper. To determine the solutions of the 
above equations we put the first terms of the expansions of functions ~i6, Pi6 , and 8 in the 
form 

6 ~ ~vZ, ~16 N ~s~l(n)z , ~ 6  N ~ a ~ ( N ) x  , 

w h e r e  ~ i s  t h e  f r e q u e n c y ,  y i s  t h e  wave  n u m b e r ;  p ,  r ,  s ,  a ,  a n d  8 a r e  c o e f f i c i e n t s .  S u b s t i -  
t u t i n g  e x p r e s s i o n s  ( 2 . 1 )  i n  t h e  k i n e m a t i c  c o n d i t i o n s  ( 1 . 4 ) ,  e q u a t i n g  t h e  o r d e r s  o f  t h e  f i r s t  
t h r e e  t e r m s  i n  t h e  f i r s t  c o n d i t i o n ,  and  r e t a i n i n g  t h e  t e r m s  i n  t h e  s e c o n d ,  we o b t a i n  [ f o r  t h e  
p r e s s u r e  we u s e  t h e  s e c o n d  e q u a t i o n s  o f  ( 1 . 2 )  and  ( 1 . 3 ) ]  

r = i / 2 ,  s = ~  = p  + 3 / 2 ,  ~ = ~ = p  + m .  

The value of m can be found from the condition that, in view of the boundedness of the poten- 
tial in the external region at infinity, we must retain terms with second derivatives with 
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respect to i~ and N in the first approximation of (1.3). Since r = ~/~ we have m = ~/~, as 
a result of which the equation for ~= after the terms of higher order have been discarded 

has the fomn 

d ~ / d N ~ - - y ~ 1 4  = 0, ( 2 . 2 )  

and Q ~ = D e x p l - - - ~ - N ) ,  i.e., when N § =, ~ § 0. We now write out the complete asymptotic 

expansions of the solutions 

= A ~ '  z ,  ~fl~ = ~v+sn(~0 + ~-~/~9~ + . . . ) X ,  
~25 = ~P+i/2(Q20 "~ ~--t/2Q21. + ...) )~, P15 = ~P+3/2(B10 2f_ ~-1/2B11 -~ ...))~, 

1325 ~-- ~P+i/2(R20 2C ~--i/2~21 "-~ ...))~, X = exp [](o~: + ~0~ i/2 -~- ?o~-i/2 ~- ...)]. 

After substituting the above expressions in the basic equations (1.2), (1.3) we obtain a sys- 
tem of simple equations [in the inner region of the form d~f~jj/dn~= F(QIj,4), in the outer 
region of form (2.2) with known right-hand sides]. Omitting the intermediate operations, we 
write equations for yj and p 

Y o = - - ' T ~  ' PI,I~ 4 - - . ,  C-~ 
0) 3~ 

p+.~ ] (2.3) 

If we now relate the magnitude of the disturbances to the halfwidth of the undisturbed jet, 
we will have 

8 = 6Iv, = A exp [./[o~ + ~o~/~ - -  ] (p + 112) In ~ + ~,~-~/~ + . . .  ]}. 

Since p has two roots, one of which is such that 

1 1 8 ~-a P~, .~ 
P:+7"=--T i +-f~o -~o~ > 0 

at any frequency m > 0, we can conclude that the relative disturbances arising in the initial 
portion of a jet of heavy liquid increase with increasing distance from the source. The in- 
crease in relative disturbances is given by a power relation g ~ ~PI +I/2 The main factor 
in the instability of a plane jet is the surrounding medium. Equation (�89 for p does not 
contain We -:, since the terms which take this quantity into account have a high order 
of smallness. When p2/pl = 0 the plane jet is stable. 

3. Axisymmetric Jet (k = i). For an axisymmetric jet the asymptotic solution can be 
bounded by the expressions 

~ = C ~  ~ ,  g , = ~ - ~ .  

In this case an evaluation of the orders of the first terms of the solution expansions gives 
r = I/2, s = ~ = p+5/4, ~ = ~ = p+I/2. To obtain nontrivial regular expansions we need the 
following expressions: 

5 = A~pZ, ~ 6  = ~P+5/4(~o + ~ - i / s ~ i  + ~ - ~ s ~ - F ' - ' ) Z ,  

~25 = ~P+1/2(~20 -~-- t /8~21 + "")Z'  P$5 : ~P+5/$( R ~  -I- ~--t/8Rll "-[- .o.)~, 

P~ = ~P+i/2(R~o + ~-1/8B21 + "")Z, ( 3 . 1 )  

Z : exp [7(~ + ?o~u8 + ?~3/8 + ? ~ / 8  -6 ?3~ 1/8 + ...)]. 

The system of equations obtained after substitution of (3.1) 
plane case, is fairly simple and allows direct integration, 
tain 

in (1.2) and (1.3), as in the 
as a result of which we can ob- 

4 --X 
? o = - - - - c - o C  , 71 ~ ~ 2  ~ O~ 

o 

327 



9 J5 - i  
P = t6  ' ~'5I,II ~ - - ~  "~r,II ,  

( 3 . 2 )  

where Ko is a Bessel function of the second kind of imaginary argument. The behavior of the 
disturbances can be assessed from Ya. Since Im ~311 < 0 and ~ > 0, then in this case too 
the disturbances arising in the initial portion increase with increase in ~ according to the 
relation 

=  ly, ~ oxp j 

As distinct from a plane jet, We -x here affects the development of disturbances at large ~. 
Thus, as (2.3) and (3.2) show, jets of heavy liquid are unstable at any frequencies ~ > 0; 
with increase in m the disturbances along the jet grow more rapidly, which leads to reduc- 
tion of the length of the intact part of the jet. This is qualitatively consistent with the 
results of experimental investigations of the development of unstable disturbances over the 
surface of capillary liquid jets flowing vertically downward (pl/p2>>l). For instance, in 
[5, 6] it was reported that when velocity fluctuations are imposed the effective length of 
the jet region (the portion in which unstable disturbances develop from a small, but experi- 
mentally determinable, amplitude before breakup) decreases with increase in frequency of the 
imposed disturbance. 
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